S PROG RAM M | NG
LOGICAND DESIGN

3RD EDITION

TONY GADDIS

Third

BN Starting Out with

Programming
Logic &
Design

This page intentionally left blank

Third

Ediition Stal'tillg Out with

Programming
LogIC
Design

Tony Gaddis

Haywood Community College

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sdo Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton Manufacturing Buyer: Pat Brown

Editor in Chief: Michael Hirsch Art Director: Anthony Gemmellaro
Acquisitions Editor: Matt Goldstein Cover Designer: Joyce Cosentino Wells
Editorial Assistant: Chelsea Kharakozova Cover Art: © iStockphoto

Director of Marketing: Patrice Jones Media Project Manager: John Cassar
Marketing Manager: Yez Alayan Full-Service Project Management: Jogender
Marketing Coordinator: Kathryn Ferranti Taneja/Aptara®, Inc.

Marketing Assistant: Emma Snider Composition: Aptara®, Inc.

Director of Production: Vince O’Brien Printer/Bindery: Edwards Brothers
Managing Editor: Jeff Holcomb Cover Printer: Lehigh-Phoenix

Production Editor: Pat Brown Color/Hagerstown

Copyright © 2013, 2010, 2008 by Pearson Education, Inc., publishing as Addison-Wesley. All
rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One
Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Gaddis, Tony.
Starting out with programming logic and design/Tony Gaddis. — 3rd ed.
p. cm.

Includes index.
ISBN-13: 978-0-13-280545-2
ISBN-10: 0-13-280545-6

1. Computer programming. [. Title. II. Title: Starting out with programming logic and design.
QA76.6.G315 2013
005.1—dc23 2011044250

10987654321

PEARSON ISBN 10: 0-13-280545-6
ISBN 13: 978-0-13-280545-2

Brief Contents

Preface xiii
Acknowledgments xxi
About the Author xxiii

Chapter T Introduction to Computers and Programming 1
Chapter 2 Input, Processing, and Output 27

Chapter 3 Modules 79

Chapter 4 Decision Structures and Boolean Logic 121
Chapter 5 Repetition Structures 169

Chapter 6 Functions 225

Chapter 7 Input Validation 267

Chapter 8 Arrays 281

Chapter 9 Sorting and Searching Arrays 337

Chapter 10 Files 375

Chapter 11 Menu-Driven Programs 429

Chapter 12 Text Processing 475

Chapter 13 Recursion 497

Chapter 14 Object-Oriented Programming 519

Chapter 15 GUI Applications and Event-Driven Programming 565
Appendix A ASCIl/Unicode Characters 585

Appendix B Flowchart Symbols 587

Appendix C Pseudocode Reference 589

Appendix D Answers to Checkpoint Questions
(located on the CD that accompanies this book)

Index 601

This page intentionally left blank

Chapter 1

Chapter 2

Chapter 3

Preface xiii

Acknowledgments xxi
About the Author xxiii

Introduction to Computers and Programming 1

1.1 Introduction e e
1.2 Hardware
1.3 How ComputersStoreData
1.4 How aProgram Workst e
1.5 Typesof Software i
Review QUESLIONSot e

Input, Processing, and Output 27

2.1 DesigningaProgram
2.2 Output, Input, and Variables
2.3 Variable Assignment and Calculations
IN THE SPOTLIGHT: Calculating Cell Phone Overage Fees
IN THE SPOTLIGHT: Calculating a Percentageccvuvenn...
IN THE SPOTLIGHT: Calculating an Average

IN THE SPOTLIGHT: Converting a Math Formula to a
Programming Statementuuttii e

2.4 Variable Declarations and Data Typesccovue....
2.5 Named Constantst
2.6 Hand TracingaProgramttt iiiinnenn..
2.7 DocumentingaProgram i
IN THE SPOTLIGHT: Using Named Constants, Style Conventions, and Comments . .
2.8 Designing Your First Program i,
Review QUESTIONS it e e
Debugging EXercisest
Programming EXercisesttt

Modules 79

3.1 Introductionto Modules
3.2 Defining and CallingaModule

vii

viii

Contents

Chapter 4

Chapter 5

IN THE SPOTLIGHT: Defining and Calling Modules 88
3.3 Local Variables 92
3.4 Passing ArgumentstoModules L. 94
IN THE SPOTLIGHT: Passing an Argument toa Module 99
IN THE SPOTLIGHT: Passing an Argument by Reference 104
3.5 Global Variables and Global Constants 108
IN THE SPOTLIGHT: Using Global Constantsc.oviurine... 109
Review QUESHIONS . . .ottt e 113
Debugging EXercisesot e 117
Programming Exercises e 117

Decision Structures and Boolean Logic 121

4.1 Introduction to Decision Structures, 121
IN THE SPOTLIGHT: Using the If-Then Statement 128
4.2 Dual Alternative Decision Structures 131
IN THE SPOTLIGHT: Using the If-Then-Else Statement 132
4.3 Comparing STriNgso vttt e 137
4.4 Nested Decision Structures 141
IN THE SPOTLIGHT: Multiple Nested Decision Structures 144
4.5 TheCase Structurettt e e 148
IN THE SPOTLIGHT: Using a Case Structureoiuueeeeennn.. 151
4.6 Logical Operatorsc..viti ittt e 153
4.7 Boolean Variables 160
Review QUESIONS . .. it e 161
Debugging EXercisesouuiininn e, 165
Programming EXercisesot 166

Repetition Structures 169

5.1 Introduction to Repetition Structures 169
5.2 Condition-Controlled Loops: while, Do-While, and Do-Until 170
IN THE SPOTLIGHT: Designing a While Loop 175
IN THE SPOTLIGHT: Designing a Do-While Loop 184
5.3 Count-Controlled Loops and the For Statement 189
IN THE SPOTLIGHT: Designing a Count-Controlled Loop

with the For Statementottt in e 197
5.4 Calculatinga Running Total 207
55 Sentinels 211
IN THE SPOTLIGHT: Using a Sentinelt 212
56 Nested LOOPS ..o voii i e e 215
Review QUESIONS . .. oot 218
Debugging EXercisesouuiininn it 222

Programming EXercisest 222

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Contents
Functions 225
6.1 Introduction to Functions: Generating Random Numbers 225
IN THE SPOTLIGHT: Using Random Numbers 229
IN THE SPOTLIGHT: Using Random Numbers to Represent Other Values 231
6.2 Writing Your Own Functions 233
IN THE SPOTLIGHT: Modularizing with Functions 240
6.3 More Library Functions i 248
Review QUESTIONS i e e e 259
Debugging EXercisest 261
Programming EXercisesottt e 262
Input Validation 267
7.1 Garbage In, Garbage Out 267
7.2 The Input Validation Loopottt 268
IN THE SPOTLIGHT: Designing an Input Validation Loop 270
7.3 Defensive Programmingc..iiiiiiniiinnnenn.. 275
Review QUESTIONS . .. it 276
Debugging EXercisesttt 278
Programming EXercisesttt 279
Arrays 281
8.1 Array Basics e 281
IN THE SPOTLIGHT: Using Array Elements in a Math Expression 288
8.2 Sequentially Searchingan Array, 295
8.3 Processing the Contentsof an Array 301
IN THE SPOTLIGHT: Processing an Arrayc.uiuiueinennennen.. 308
8.4 Parallel Arrayst e 315
IN THE SPOTLIGHT: Using Parallel Arrays oiiion.. 316
8.5 Two-Dimensional Arraysciuiiiiiiiiii. 319
IN THE SPOTLIGHT: Using a Two-Dimensional Array 323
8.6 Arrays of Three or More Dimensionsc.c.couo.... 328
Review QUESHIONSot e 329
Debugging EXercisesiuiiiuin i 332
Programming EXercisest 333
Sorting and Searching Arrays 337
9.1 The Bubble Sort Algorithm 337
IN THE SPOTLIGHT: Using the Bubble Sort Algorithm 344
9.2 The Selection Sort Algorithm 351
9.3 The Insertion Sort Algorithm 357

9.4 The Binary Search Algorithm 363

ix

Contents

Chapter 10

Chapter 11

Chapter 12

Chapter 13

IN THE SPOTLIGHT: Using the Binary Search Algorithm 367
Review QUESHIONSot e 369
Debugging EXerciset 373
Programming Exercises i e 373
Files 375

10.7 Introduction to File Inputand Output 375
10.2 Using Loops to Process Files 387
IN THE SPOTLIGHT: Working with Files 392
10.3 Using Files and Arraysttt 396
10.4 Processing Recordst 397
IN THE SPOTLIGHT: Adding and Displaying Records 402
IN THE SPOTLIGHT: Searching foraRecord 406
IN THE SPOTLIGHT: Modifying Records oo, 408
IN THE SPOTLIGHT: Deleting Records 412
10.5 Control Break LOgicttt 415
IN THE SPOTLIGHT: Using Control Break Logic 417
Review QUESLIONS . .. o e 423
Debugging EXercise e 426
Programming Exercises i 426

Menu-Driven Programs 429

11.71 Introduction to Menu-Driven Programs, 429
11.2 Modularizing a Menu-Driven Program 440
11.3 Using a Loop to RepeattheMenu 445
IN THE SPOTLIGHT: Designing a Menu-Driven Program 450
11.4 Multiple-Level Menus e 464
Review QUESIONS . ..ot e 470
Programming EXercisest e e 472

Text Processing 475

12.7 Introduction 475
12.2 Character-by-Character Text Processing, 477
IN THE SPOTLIGHT: Validating a Password 480
IN THE SPOTLIGHT: Formatting and Unformatting Telephone Numbers 486
Review QUESIONS . ..ot e 491
Debugging EXercisesttt 493
Programming EXercisesttt 494

Recursion 497

13.1 Introduction to Recursion 497
13.2 Problem Solving with Recursion 500

Chapter 14

Chapter 15

Appendix A
Appendix B
Appendix C
Appendix D

Contents
13.3 Examples of Recursive Algorithms 504
Review QUESLIONS e 514
Programming EXercisesttt 517
Object-Oriented Programming 519
14.1 Procedural and Object-Oriented Programming 519
T14.2 Classes . ..ot e 523
14.3 Using the Unified Modeling Language to Design Classes 534
14.4 Finding the Classes and Their Responsibilities in a Problem 537
IN THE SPOTLIGHT: Finding the Classes in a Problem 537
IN THE SPOTLIGHT: Determining Class Responsibilities 541
T4.5 Inheritanceo e 547
14.6 Polymorphism 555
Review QUESLIONS . .. oot 559
Programming Exercisest 563
GUI Applications and Event-Driven
Programming 565
15.1 Graphical User Interfaces 565
15.2 Designing the User Interface for a GUI Program 568
IN THE SPOTLIGHT: Designing a Window, 573
15.3 Writing Event Handlers i i, 575
IN THE SPOTLIGHT: Designing an Event Handler 578
Review QUESTIONSt e 580
Programming EXercisesttt 582

ASCIl/Unicode Characters 585
Flowchart Symbols 587
Pseudocode Reference 589

Answers to Checkpoint Questions
(located on the CD that accompanies this book)

Index 601

xi

This page intentionally left blank

Preface

This book uses a language-independent approach to teach programming

concepts and problem-solving skills, without assuming any previous pro-
gramming experience. By using easy-to-understand pseudocode, flowcharts, and other
tools, the student learns how to design the logic of programs without the complication
of language syntax.

Welcome to Starting Out with Programming Logic and Design, Third Edition.

Fundamental topics such as data types, variables, input, output, control structures,
modules, functions, arrays, and files are covered as well as object-oriented concepts,
GUI development, and event-driven programming. As with all the books in the Starting
Out With . . . series, this text is written in clear, easy-to-understand language that stu-
dents find friendly and inviting.

Each chapter presents a multitude of program design examples. Short examples that
highlight specific programming topics are provided, as well as more involved examples
that focus on problem solving. Each chapter includes at least one In the Spotlight sec-
tion that provides step-by-step analysis of a specific problem and demonstrates a solu-
tion to that problem.

This book is ideal for a programming logic course that is taught as a precursor to a
language-specific introductory programming course, or for the first part of an introduc-
tory programming course in which a specific language is taught.

Changes in the Third Edition

This book’s pedagogy, organization, and clear writing style remain the same as in the
previous edition. Many improvements have been made, which are summarized here:

¢ Detailed guidance for students designing their first program

A new section titled Designing Your First Program has been added to Chapter 2.
This section takes the student through the process of analyzing a problem and deter-
mining its requirements. The student sees an example of how a program’s input,
processing, and output can be determined, as a prelude to writing pseudocode and
drawing flowcharts.

Also, a new In the Spotlight section has been added to Chapter 2 to show the
student how to examine the steps that are taken to manually perform a calculation
(determining cell phone overage fees), and then convert those steps to a computer
algorithm.

* New Debugging Exercises
A new set of Debugging Exercises have been added to most of the chapters. The

student examines a set of pseudocode algorithms and identifies logical errors.
xiii

Xiv

Preface

¢ Greater consistency between flowcharts and pseudocode

Throughout the book, many of the flowcharts have been revised so they appear
more consistent with the pseudocode.

¢ Expanded coverage of nested repetition structures

In Chapter 5 the section on nested loops has been expanded with an additional
example.

¢ Additional VideoNotes for repetition structures

New VideoNotes have been added for the bo-while and For loops in Chapter 5.

¢ File specification documentation and print spacing charts

File specification documentation and print spacing charts are now discussed in
Chapter 10.

¢ New pseudocode quick reference guide

A quick reference guide to the pseudocode used in the book has been added as
Appendix C.

¢ New Programming Language Companions

New language companions have been added for Python 3 and C++. All of the book’s lan-
guage companions are available on the book’s resource site at www.pearsonhighered.
com/gaddis.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a concise and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in
high-level languages.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, data types, variables, and
sequence structures. The student learns to use pseudocode and flowcharts to design simple
programs that read input, perform mathematical operations, and produce screen output.

Chapter 3: Modules

This chapter demonstrates the benefits of modularizing programs and using the top-
down design approach. The student learns to define and call modules, pass arguments
to modules, and use local variables. Hierarchy charts are introduced as a design tool.

Chapter 4: Decision Structures and Boolean Logic

In this chapter students explore relational operators and Boolean expressions and are
shown how to control the flow of a program with decision structures. The If-Then,

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface

If-Then-Else, and If-Then-Else If statements are covered. Nested decision struc-
tures, logical operators, and the case structure are also discussed.

Chapter 5: Repetition Structures

This chapter shows the student how to use loops to create repetition structures. The
While, Do-While, Do-Until, and For loops are presented. Counters, accumulators,
running totals, and sentinels are also discussed.

Chapter 6: Functions

This chapter begins by discussing common library functions, such as those for generat-
ing random numbers. After learning how to call library functions and how to use val-
ues returned by functions, the student learns how to define and call his or her own
functions.

Chapter 7: Input Validation

This chapter discusses the importance of validating user input. The student learns to
write input validation loops that serve as error traps. Defensive programming and the
importance of anticipating obvious as well as unobvious errors is discussed.

Chapter 8: Arrays

In this chapter the student learns to create and work with one- and two-dimensional
arrays. Many examples of array processing are provided including examples illustrat-
ing how to find the sum, average, and highest and lowest values in an array, and how
to sum the rows, columns, and all elements of a two-dimensional array. Programming
techniques using parallel arrays are also demonstrated.

Chapter 9: Sorting and Searching Arrays

In this chapter the student learns the basics of sorting arrays and searching for data
stored in them. The chapter covers the bubble sort, selection sort, insertion sort, and
binary search algorithms.

Chapter 10: Files

This chapter introduces sequential file input and output. The student learns to read and
write large sets of data, store data as fields and records, and design programs that work
with both files and arrays. The chapter concludes by discussing control break processing.

Chapter 11: Menu-Driven Programs

In this chapter the student learns to design programs that display menus and execute
tasks according to the user’s menu selection. The importance of modularizing a menu-
driven program is also discussed.

Chapter 12: Text Processing

This chapter discusses text processing at a detailed level. Algorithms that step through
the individual characters in a string are discussed, and several common library func-
tions for character and text processing are introduced.

XV

xvi

Preface

Chapter 13: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recur-
sive calls is provided, and recursive applications are discussed. Recursive algorithms
for many tasks are presented, such as finding factorials, finding a greatest common
denominator (GCD), summing a range of values in an array, and performing a binary
search. The classic Towers of Hanoi example is also presented.

Chapter 14: Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It
covers the fundamental concepts of classes and objects. Fields, methods, access
specification, constructors, accessors, and mutators are discussed. The student
learns how to model classes with UML and how to find the classes in a particular
problem.

Chapter 15: GUI Applications and Event-Driven Programming

This chapter discusses the basic aspects of designing a GUI application. Building graph-
ical user interfaces with visual design tools (such as Visual Studio® or NetBeans™) is
discussed. The student learns how events work in a GUI application and how to write
event handlers.

Appendix A: ASCIl/Unicode Characters

This appendix lists the ASCII character set, which is the same as the first 127 Unicode
character codes.

Appendix B: Flowchart Symbols

This appendix shows the flowchart symbols that are used in this book.

Appendix C: Pseudocode Reference

This appendix provides a quick reference for the pseudocode language that is used in
the book.

Appendix D: Answers to Checkpoint Questions

This appendix provides answers to the Checkpoint questions that appear through-
out the text, and can be downloaded from the CD that accompanies this book or
from the book’s online resource page at www.pearsonhighered.com/gaddis.

Organization of the Text

The text teaches programming logic and design in a step-by-step manner. Each chapter
covers a major set of topics and builds knowledge as students progress through the
book. Although the chapters can be easily taught in their existing sequence, there is
some flexibility. Figure P-1 shows chapter dependencies. Each box represents a chapter
or a group of chapters. A chapter to which an arrow points must be covered before the
chapter from which the arrow originates. The dotted line indicates that only a portion
of Chapter 10 depends on information presented in Chapter 8.

www.pearsonhighered.com/gaddis

Preface Xvii

Figure P-1 Chapter dependencies

Chapters 1-6
(Cover in Order)

Depend On
Chapter 15
Chapter 7 GUI Applications and

Input Validation Event-Driven
Programming

Chapter 8 . Chapter 10 Chapter 13

Arrays Files Recursion

Some Topics i :n
Chapter 10 Depend on

Chapter 8 Chapter 11
Menu-Driven

Chapter 14
Object-Oriented
Programming

Programs

Depend On

Chapter 9
Sorting and Searching
Arrays

Chapter 12
Text Processing

Features of the Text

Concept Statements. Each major section of the text starts with a concept state-
ment. This statement concisely summarizes the main point of the section.

Example Programs. Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic. Pseudocode, flow-
charts, and other design tools are used in the example programs.

In the Spotlight. Each chapter has one or more In the ﬁ
Spotlight case studies that provide detailed, step-by-step analy-

sis of problems, and show the student how to solve them.

B VideoNotes. A series of online videos, developed specifically for this book, are avail-
able for viewing at www.pearsonhighered.com/gaddis. Icons appear throughout the

VideoNot
S text alerting the student to videos about specific topics.

0 NOTE: Notes appear at several places throughout the text. They are short expla-
nations of interesting or often misunderstood points relevant to the topic at hand.

"

=

TIP: Tips advise the student on the best techniques for approaching different pro-
gramming or animation problems.

www.pearsonhighered.com/gaddis

Xviii

Preface

®

&

WARNING! Warnings caution students about programming techniques or prac-
tices that can lead to malfunctioning programs or lost data.

Programming Language Companions. Many of the pseudocode programs
shown in this book have also been written in Java, Python, and Visual Basic. These
programs appear in the programming language companions that are available at
www.pearsonhighered.com/gaddis. Icons appear next to each pseudocode program
that also appears in the language companions.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.
They are designed to query the student’s knowledge quickly after learning a new topic.

Review Questions. Each chapter presents a thorough and diverse set of Review
Questions and exercises. They include Multiple Choice, True/False, Short Answer, and
Algorithm Workbench.

Debugging Exercises. Most chapters provide a set of debugging exercises in which
the student examines a set of pseudocode algorithms and identifies logical errors.

Programming Exercises. Each chapter offers a pool of Programming Exercises de-
signed to solidify the student’s knowledge of the topics currently being studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following
items are available on the Gaddis Series resource page at www.pearsonhighered.com/
gaddis:

e Access to the book’s companion VideoNotes

An extensive series of online VideoNotes have been developed to accompany
this text. Throughout the book, VideoNote icons alert the student to videos cov-
ering specific topics. Additionally, one programming exercise at the end of each
chapter has an accompanying VideoNote explaining how to develop the prob-
lem’s solution.

¢ Access to the Language Companions for Python, Java, Visual
Basic, and C++

Programming language companions specifically designed to accompany the Third
Edition of this textbook are available for download. The companions introduce the
Java™, Python®, Visual Basic®, and C++ programming languages, and correspond
on a chapter-by-chapter basis with the textbook. Many of the pseudocode programs
that appear in the textbook also appear in the companions, implemented in a spe-
cific programming language.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface

¢ A link to download the RAPTOR flowcharting environment

RAPTOR is a flowchart-based programming environment developed by the US Air
Force Academy Department of Computer Science.

Instructor Resources
The following supplements are available to qualified instructors only:

e Answers to all of the Review Questions

e Solutions for the Programming Exercises

e PowerPoint® presentation slides for each chapter
e Test bank

Visit the Pearson Instructor Resource Center (http://www.pearsonhighered.
com/irc) or send an email to computing@aw.com for information on how to access them.

Xix

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc

This page intentionally left blank

Acknowledgments

There have been many helping hands in the development and publication of this text. I
would like to thank the following faculty reviewers:

Reviewers of the Second Edition

Cherie Aukland
Thomas Nelson Community College

Steve Browning
Freed Hardeman University

Stephen Robert Cheskiewicz
Keystone College and Wilkes University

Ronald J. Harkins
Miami University, OH

Robert S. Overall, III
Nashville State Community College

John Thacher
Guwinnett Technical College

Scott VanSelow
Edison State College

Reviewers of the First Edition

Reni Abraham
Houston Community College

John P. Buerck
Saint Louis University

Jill Canine
Tvy Tech Community College of Indiana

Steven D. Carver
Ivy Tech Community College

Katie Danko
Grand Rapids Community College

Coronicca Oliver
Coastal Georgia Community College

Dale T. Pickett
Baker College of Clinton Township

Tonya Pierce
Tvy Tech Community College

xxi

xxii Acknowledgments

Larry Strain
Ivy Tech Community College—-Bloomington

Donald Stroup
Ivy Tech Community College

Jim Turney
Austin Community College

I also want to thank everyone at Pearson for making the Starting Out With . . . series
so successful. I have worked so closely with the team at Pearson Addison-Wesley that I
consider them among my closest friends. I am extremely fortunate to have Michael
Hirsch and Matt Goldstein as my editors, and Chelsea Kharakozova as Editorial Assis-
tant. They have guided me through the process of revising this, and many other books.
I am also fortunate to have Yez Alayan as Marketing Manager, and Kathryn Ferranti as
Marketing Coordinator. Their hard work is truly inspiring, and they do a great job get-
ting my books out to the academic community. The production team of Jeff Holcomb
and Pat Brown worked tirelessly to make this book a reality. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks.
Tony has twenty years of experience teaching computer science courses, primarily at
Haywood Community College. He is a highly acclaimed instructor who was previously
selected as the North Carolina Community College “Teacher of the Year” and has
received the Teaching Excellence award from the National Institute for Staff and Orga-
nizational Development. The Starting Out With . . . series includes introductory books
covering Programming Logic and Design, C++, Java, Microsoft® Visual Basic, C#®,
Python, and Alice, all published by Pearson.

xxiii

This page intentionally left blank

Third

BN Starting Out with

Programming
Logic &
Design

This page intentionally left blank

00 a0
1CE B @EE

1] o o o o
i i i i

oooope .

- E Introduction to Computers
mimiain] < I

- E and Programming

1.1 Introduction 1.4 How a Program Works
1.2 Hardware 1.5 Types of Software
1.3 How Computers Store Data

m—
1.1 Introduction

4 Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email,
and participating in online classes. At work, people use computers to analyze data,
make presentations, conduct business transactions, communicate with customers and
coworkers, control machines in manufacturing facilities, and many other things. At
home, people use computers for tasks such as paying bills, shopping online, communi-
cating with friends and family, and playing computer games. And don’t forget that cell
phones, iPods®, BlackBerries®, car navigation systems, and many other devices are
computers too. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their
programs tell them to do. A program is a set of instructions that a computer follows to
perform a task. For example, Figure 1-1 shows screens from two commonly used pro-
grams: Microsoft Word and PowerPoint.

2

Chapter 1

Introduction to Computers and Programming

Figure 1-1 Commonly used programs

135 Whatis the purpose of ASCIT

L16 Whatencoding scheme is extnuve & represens all the characoers of afl the
Eanguages inthe werld?

137 Whatds the teer "igital deta® sed "Sghal devics™ mean?

1.4 HowaProgram Works

Design Animutions SideShow Resiew View Aadim Aoosst L

imvantod

Coecept: Aromputer's CPU con oaly understand instructions that are written in
e b G

programi n mochise langusge, Sther progeamming fo -rwenl\m-h

Earler, we szated that she CFU I the mest IMPOrTant COMPONErs in & COMPuTer beciuse
itésthe partof the compuser that runs programs. Scmatimes the CPU by calied the
“eeemputer's brain,” aeed If deicribed a3 being “wmire” lshough these o
intiphers, you ihould urderitind that the CPUG rot & brain, and Ith + The
CPU Iy an electronic device that bs desigmed to do specific things. In particular, the CPU s
designed to perform operations such as the following:

 Rpsding s plocs of dta o main mamsry

o Adling by insrilsery

* Sutrracting one mumber from ancther mmber

® Multiplying tos numbery

@ Dietng onw umbar by snathes o

of data from coe another

Rerirss pbrsin find It vary ffieult 10 it anti

——

g whethes cna vakue it squal to ancther vabu

pripin ing om s v, however. It hes & b tokd what to oo, and thats the Click to add notes
PR " - -

b imein

Poge 1ot W7 e 14MT B

EEEnT e €1 o o IEERT e

Iy

Programs are commonly referred to as software. Software is essential to a computer be-
cause without software, a computer can do nothing. All of the software that we use to
make our computers useful is created by individuals known as programmers or soft-
ware developers. A programmer, or software developer, is a person with the training
and skills necessary to design, create, and test computer programs. Computer program-
ming is an exciting and rewarding career. Today, you will find programmers working in
business, medicine, government, law enforcement, agriculture, academics, entertain-
ment, and almost every other field.

This book introduces you to the fundamental concepts of computer programming. Be-
fore we begin exploring those concepts, you need to understand a few basic things
about computers and how they work. This chapter will build a solid foundation of
knowledge that you will continually rely on as you study computer science. First, we
will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will discuss
the major types of software that computers use.

Hardware

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. Most computer systems are made of similar
hardware devices.

The term hardware refers to all of the physical devices, or components, that a com-
puter is made of. A computer is not one single device, but a system of devices that all
work together. Like the different instruments in a symphony orchestra, each device in a
computer plays its own part.

1.2 Hardware

If you have ever shopped for a computer, you’ve probably seen sales literature listing
components such as microprocessors, memory, disk drives, video displays, graphics
cards, and so on. Unless you already know a lot about computers, or at least have a
friend who does, understanding what these different components do can be confusing.
As shown in Figure 1-2, a typical computer system consists of the following major
components:

The central processing unit (CPU)
Main memory

Secondary storage devices

Input devices

Output devices

Figure 1-2 Typical components of a computer system (all photos © Shutterstock)

— Central Processing —
Unit

Output
Devices

‘—»

Input
Devices

» Main Memory
(RAM)

¢ Secondary
Storage Devices

Let’s take a closer look at each of these components.

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is
the part of a computer that actually runs programs. The CPU is the most important
component in a computer because without it, the computer could not run software.

4

Chapter 1

Introduction to Computers and Programming

In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device. The
two women in the photo are working with the historic ENIAC computer. The ENIAC,
considered by many to be the world’s first programmable electronic computer, was
built in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine,
which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a
lab technician holding a modern-day microprocessor. In addition to being much
smaller than the old electro-mechanical CPUs in early computers, microprocessors are
also much more powerful.

Figure 1-3 The ENIAC computer (photo courtesy of U.S. Army Historic Computer Images)

Figure 1-4 A lab technician holds a modern microprocessor (photo courtesy of Intel

Corporation)

1.2 Hardware

Main Memory

You can think of main memory as the computer’s work area. This is where the com-
puter stores a program while the program is running, as well as the data that the pro-
gram is working with. For example, suppose you are using a word processing program
to write an essay for one of your classes. While you do this, both the word processing
program and the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

Figure 1-5 Memory chips (photo © Garsya/Shutterstock)

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type of secondary storage device is the disk drive. A disk drive
stores data by magnetically encoding it onto a circular disk. Most computers have a
disk drive mounted inside their case. External disk drives, which connect to one of the
computer’s communication ports, are also available. External disk drives can be used
to create backup copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copy-
ing data, and for moving it to other computers. For many years floppy disk drives were
popular. A floppy disk drive records data onto a small floppy disk, which can be
removed from the drive. Floppy disks have many disadvantages, however. They hold
only a small amount of data, are slow to access data, and are sometimes unreliable.
The use of floppy disk drives has declined dramatically in recent years, in favor of

6

Chapter 1

Introduction to Computers and Programming

superior devices such as USB drives. USB drives are small devices that plug into the
computer’s USB (universal serial bus) port, and appear to the system as a disk drive.
These drives do not actually contain a disk, however. They store data in a special type
of memory known as flash memory. USB drives, which are also known as memory
sticks and flash drives, are inexpensive, reliable, and small enough to be carried in your
pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but
is encoded as a series of pits on the disc surface. CD and DVD drives use a laser to de-
tect the pits and thus read the encoded data. Optical discs hold large amounts of data,
and because recordable CD and DVD drives are now commonplace, they are good
mediums for creating backup copies of data.

Input Devices

Input is any data the computer collects from people and from other devices. The com-
ponent that collects the data and sends it to the computer is called an input device.
Common input devices are the keyboard, mouse, scanner, microphone, and digital
camera. Disk drives and optical drives can also be considered input devices because
programs and data are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives and CD recorders can also be considered output devices because the system
sends data to them in order to be saved.

Checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.
1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its
data while the program is running?

1.6 What part of the computer holds data for long periods of time, even when
there is no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.3 How Computers Store Data

How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of Os
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte
is only enough memory to store a letter of the alphabet or a small number. In order to
do anything meaningful, a computer has to have lots of bytes. Most computers today
have millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit. Computer scientists usually think of bits as tiny switches that
can be either on or off. Bits aren’t actual “switches,” however, at least not in the con-
ventional sense. In most computer systems, bits are tiny electrical components that
can hold either a positive or a negative charge. Computer scientists think of a posi-
tive charge as a switch in the o7 position, and a negative charge as a switch in the off
position. Figure 1-6 shows the way that a computer scientist might think of a byte of
memory: as a collection of switches that are each flipped to either the on or off
position.

Figure 1-6 Think of a byte as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off
pattern that represents the data. For example, the pattern shown on the left in Figure 1-7
shows how the number 77 would be stored in a byte, and the pattern on the right
shows how the letter A would be stored in a byte. In a moment you will see how these
patterns are determined.

Figure 1-7 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

Chapter 1 Introduction to Computers and Programming

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether
the bit is turned on or off, it can represent one of two different values. In computer sys-
tems, a bit that is turned off represents the number 0 and a bit that is turned on repre-
sents the number 1. This corresponds perfectly to the binary numbering system. In the
binary numbering system (or binary, as it is usually called) all numeric values are writ-
ten as sequences of Os and 1s. Here is an example of a number that is written in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with
the rightmost digit and moving left, the position values are 29, 21, 22, 23 and so forth,
as shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values
calculated. Starting with the rightmost digit and moving left, the position values are 1,
2,4, 8, and so forth.

Figure 1-8 The values of binary digits as powers of 2

10011101
A M—Z‘J

Figure 1-9 The values of binary digits

‘[‘001110

i

o I S\ C Y

16
32
64
128

To determine the value of a binary number you simply add up the position values of
all the 1s. For example, in the binary number 10011101, the position values of the 1s
are 1,4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all of these position
values is 157. So, the value of the binary number 10011101 is 157.

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory.
Each 1 is represented by a bit in the on position, and each 0 is represented by a bit in
the off position.

1.3 How Computers Store Data

Figure 1-10 Determining the value of 10011101

10011101

128
1+4+8+16+128 =157

Figure 1-11 The bit pattern for 157

Position
values

128 + 16 +8 +4 +1 =157

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0.
When all of the bits in a byte are set to 1 (turned on), then the byte holds the largest
value that can be stored in it. The largest value that can be stored in a byte is 1 + 2
+4+8+ 16+ 32+ 64+ 128 = 255. This limit exists because there are only eight bits
in a byte.

What if you need to store a number larger than 255? The answer is simple: use more
than one byte. For example, suppose we put two bytes together. That gives us 16 bits.
The position values of those 16 bits would be 20, 21, 22, 23, and so forth, up through
215 As shown in Figure 1-12, the maximum value that can be stored in two bytes is
65,535. If you need to store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

D DD D)D) DT
D00V OC

Position
values

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32+ 16 + 8 + 4 + 2 + 1 = 65535

